Analysis 1 - Mid-Sem exam - 2008-09

B.Math (Hons.)

Problem 1. Show that the ordered field \mathbb{R} of real numbers has the Archimedean property.

Solution. We need to prove that for every x > 0, y > 0, there exists a natural number n such that nx > y. Let \mathbb{N} denote the set of natural numbers. We first prove the following lemma.

Lemma: \mathbb{N} is unbounded.

Suppose, \mathbb{N} is bounded. By, l.u.b axiom there exists a least upper bound α such that $n \leq \alpha$ for all $n \in \mathbb{N}$. Now, since α is the least upper bound, $\alpha - 1$ is not an upper bound. Thus, there exists a k such that $k \geq \alpha - 1$. This implies that $k + 2 > \alpha$. Hence we get a contradiction. Thus, \mathbb{N} is unbounded.

Now, given x > 0, y > 0 consider y/x. By the previous lemma, there exists a $n \in \mathbb{N}$ such that n > y/x. Thus we have nx > y.

Problem 2. For any two subsets A, B of \mathbb{R} , define

$$A + B = \{a + b : a \in A, b \in B\};$$

$$AB = \{ab : a \in A, b \in B\}$$

Show that if A, B are bounded above,

$$sup(A+B) = sup(A) + sup(B).$$

Give an example to show that

$$sup(AB) = sup(A).sup(B),$$

need not be true.

Solution. (a) To prove that sup(A+B) = sup(A) + sup(B).

Since, A and B are bounded, sup(A), sup(B), and sup(A+B) are finite.

claim 1: $sup(A+B) \leq sup(A) + sup(B)$.

Let $x \in A + B$ be any arbitrary element. Then x = a + b for some $a \in A$ and $b \in B$. And we know that $a \leq sup(A)$ and $b \leq sup(B)$. Hence $x = a + b \leq sup(A) + sup(B)$.

Hence $x \leq sup(A) + sup(B)$ for all $x \in A + B$. Thus we have $sup(A + B) \leq sup(A) + sup(B)$.

claim 2: $sup(A+B) \ge sup(A) + sup(B)$.

Let $\epsilon > 0$ be arbitrary. Then there exists an $a \in A$ such that $a \ge sup(A) - \epsilon/2$. Similarly, there exists a $b \in B$ such that $b \ge sup(B) - \epsilon/2$. Then $a + b \ge sup(A) + sup(B) - \epsilon$.

But we have $sup(A + B) \ge a + b$. Hence for all $\epsilon > 0$ we have $sup(A + B) \ge sup(A) + sup(B) - \epsilon$. Therefore we have $sup(A + B) \ge sup(A) + sup(B)$. Thus, from claim 1 and claim 2, we have sup(A + B) = sup(A) + sup(B).

(b) To show that sup(AB) = sup(A)sup(B) is not necessarily true.

Let A = [-1, 0] and B = [-1, 0]. We have sup(A) = sup(B) = 0, and hence sup(A). sup(B) = 0.

Now, we have that $1 \in A.B$. Thus $sup(A, B) \ge 1$. Hence we cannot have sup(AB) = sup(A)sup(B).

Problem 3. Show that intervals [0, 1] and (0, 1) have same cardinality.

Solution. Let

$$H = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$$

Define the function $f: (0,1) \to [0,1]$ such that

$$f(x) = \begin{cases} 0 & \text{if } x = 1/2 \\ 1 & \text{if } x = 1/3 \\ 1/(n-2) & \text{if } x = 1/n \text{ ; } n \ge 3 \text{ and } x \in \mathbb{N} \\ x & \text{if } x \notin H \end{cases}$$

Now, define $g: [0,1] \to (0,1)$ as

$$f(x) = \begin{cases} 1/2 & \text{if } x = 0\\ 1/3 & \text{if } x = 1\\ 1/(n+2) & \text{if } x = 1/n \text{ ; } n \ge 3 \text{ and } x \in \mathbb{N}\\ x & \text{if } x \notin H \cup \{0,1\} \end{cases}$$

Now note that $f \circ g = I$ and $g \circ f = I$. Hence we have that f is a bijection, and the intervals [0, 1] and (0, 1) have same cardinality.

Problem 4. Let $\{a_n\}$ be a sequence of real numbers converging to $a \in \mathbb{R}$. Define

$$b_n = \frac{1}{n}(a_1 + a_2 + \dots + a_n)$$

for $n \geq 1$. Show that $\{b_n\}$ is a converging sequence converging to a.

Solution. Let $\epsilon > 0$ be arbitrary. Since $\{a_i\}$ is converging sequence, we can choose a K such that

$$|a_i - a| < \frac{\epsilon}{2} \qquad \forall i \ge K$$

Let

$$M = \sum_{i=1}^{K} \mid a_i - a \mid$$

For $n \geq K$, we have

$$b_n - a \mid = \frac{1}{n} \left| \sum_{i=1}^n a_i - na \right|$$

$$\leq \frac{1}{n} \sum_{i=1}^n |a_i - a|$$

$$= \frac{1}{n} \sum_{i=1}^K |a_i - a| + \frac{1}{n} \sum_{i=K+1}^n |a_i - a|$$

$$\leq \frac{M}{n} + \frac{\epsilon}{2} \frac{n - K}{n}$$

$$\leq \frac{M}{n} + \frac{\epsilon}{2}$$

Now there exists a N such that $M/n < \epsilon/2$ for all $n \ge N$. Therefore for all $n \ge max\{N,K\}$, we have

$$|b_n - a| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} \le \epsilon.$$

Since ϵ is arbitrary b_n converges to a.

Problem 5. Show that every Cauchy sequence of real numbers is convergent.

Solution. Let $\{x_n\}$ be a cauchy sequence in \mathbb{R} . Let $\epsilon > 0$ be arbitrary. There exist N > 0, such that for all $m, n \ge N$, we have that $|x_n - x_m| < \epsilon/2$. In particular we have $|x_n - x_N| < \epsilon/2$. Or equivalently,

 $x_n \in (x_N - \epsilon/2, x_N + \epsilon/2) \qquad \forall n \ge N$ (1)

From this we make the following observations:

(a) For all n > N we have $x_n > x_N - \epsilon/2$

(b) If $x_n > x_N + \epsilon/2$, then $n \in \{1, 2, \dots, N-1\}$. Thus, the set of n such that $x_n \ge x_N + \epsilon/2$ is finite.

Let $S = \{x \in \mathbb{R} : \text{there exists infinitely many } n \text{ such that } x_n \geq x\}$. We claim that S is non-empty, bounded above and that sup(S) is the limit of the given sequence.

Let $\epsilon = 1$. There there exists a N such that (1) holds. Therefore $x_N - 1/2$ belongs to S. Hence S is non empty.

We claim that $x_N + 1$ is an upper bound for S. If this were not true, there exists a $y \in S$ such that $y > x_N + 1$ and $x_n \ge y$ for infinitely many n. This implies that $x_n > x_N + 1$ for infinitely many n. This results in a contradiction from (b). Hence $x_N + 1$ is an upper bound for S.

By the LUB axiom, there exists a $l \in \mathbb{R}$, such that sup(S) = l. We claim that $\lim x_n = l$. Let $\epsilon > 0$ be given. As l is an upper bound for S and $x_N - \epsilon/2 \in S$, from above, we infer that $x_N - \epsilon/2 \leq l$. Since l is the least upperbound for S and $x_N + \epsilon/2$ is an upper bound for S, we see that $l \leq x_N + \epsilon/2$. Thus we have $x_N - \epsilon/2 \leq l \leq x_N + \epsilon/2$ or

$$|x_N - l| \le \epsilon/2$$

For $n \geq N$, we have

$$|x_n - l| \leq |x_n - x_N| + |x_N - l|$$

$$\leq \epsilon/2 + \epsilon/2$$

Thus we have shown that $\lim x_n = l$.

Problem 6. Let A be a subset of \mathbb{R} . Show that the interior of A is the largest open set contained in A.

Solution. Denote interior of A as int(A). To show that, int(A) is the largest open set contained in A.

Firstly, by definition of int(A), we have that int(A) is an open set contained in A. Let X be the largest open set. We have that $X \supseteq int(A)$.

Let $x \in X$. Since X is open, there exists an $\epsilon > 0$ such that $B(x, \epsilon) \subset X \subset A$. From the definition of int(A) we have $X \subseteq int(A)$.

Hence X = int(A).

Problem 7. Suppose $g : \mathbb{R} \to \mathbb{R}$ is a continuous function. Define a new function $g_+ : \mathbb{R} \to \mathbb{R}$ by

$$g_{+}(x) = \begin{cases} 0 & if \ g(x) < 0, \\ x & otherwise. \end{cases}$$

Show that if g is continuous then g_+ is continuous. Give an example where g_+ is continuous but g is not continuous.

Solution. (a) To show that g_+ is continuous. Firstly, note that

$$g_+(x) = \frac{g(x)}{2} + \frac{|g(x)|}{2}$$

claim 1 : Let $x \in \mathbb{R}$. If g is continuous at x then |g| is continuous at x.

Let $\epsilon > 0$ be arbitrary. Since, g is continuous at x there exists a $\delta > 0$ such that if $|x - y| < \delta$, then

$$\mid g(x) - g(y) \mid < \epsilon$$

Now,

$$\left| \mid g(x) \mid - \mid g(y) \mid \right| \leq \mid g(x) - g(y) \mid \leq \epsilon$$

thus we have that at x, there exists a $\delta > 0$ such that if $|x - y| < \delta$, then

$$\left| \mid g(x) \mid - \mid g(y) \mid \right| < \epsilon$$

Thus, |g| is continuous.

Since, linear combination of continuous functions is continuous, we have g_+ is continuous.

(b) To show that if g_+ is continuous, g need not be continuous.

Let $g : \mathbb{R} \to \mathbb{R}$, given by

$$g(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \\ -1 & \text{if } x \in \mathbb{Q}^d \end{cases}$$

Note that g is discontinuous. Now, we have $g_+(x) = 0$ for all $x \in \mathbb{R}$, which is continuous. Hence if g_+ is continuous, g need not be continuous.